8,993 research outputs found

    A probabilistic approach to model-based adaptive control for damping of interarea oscillations

    No full text
    Published versio

    Intersociety Literacy Comparisons

    Get PDF
    literates, isolated illiterates, proximate illiterates, literacy measures, illustration, policy implication

    Deciphering Deconfinement in Correlations of Conserved Charges

    Get PDF
    Diagonal and off-diagonal flavor and conserved charge susceptibilities reveal the prevalent degrees of freedom of heated strongly interacting matter. Results obtained from lattice simulations are compared with various model estimates in an effort to weed down various possible pictures of a quark gluon plasma. We argue that the vanishing of the off-diagonal quark flavor susceptibilities and its derivatives with respect to chemical potential, at temperatures above 1.5Tc, can only be understood in a picture of a gas or liquid composed of quasi-particles which carry the same quantum numbers as quarks and antiquarks. A potential new observable, blind to neutral and non-strange particles, is introduced and related via isospin symmetry to the ratio of susceptibilities of baryonic strangeness to strangeness generated in the excited matter created at RHIC.Comment: 5 pages, 3 figures, LATEX, To appear in the proceedings of the International Conference on Strangeness in Quark Matter, Los Angeles, CA, Mar 26-31, 200

    Hadron Mass Spectrum from Lattice QCD

    Get PDF
    Finite temperature lattice simulations of quantum chromodynamics (QCD) are sensitive to the hadronic mass spectrum for temperatures below the "critical" temperature T_c ~ 160 MeV. We show that a recent precision determination of the QCD trace anomaly shows evidence for the existence of a large number of hadron states beyond those known from experiment. The lattice results are well represented by an exponentially growing hadron mass spectrum up to a temperature T = 155 MeV. Using simple parametrizations we show how one may estimate the total spectral weight in these yet undermined states

    Theoretical spectroscopic studies of the atomic transitions and lifetimes of low-lying states in Ti IV

    Full text link
    The astrophysically important electric quadrupole (E2) and magnetic dipole (M1) transitions for the low-lying states of triply ionized titanium (Ti IV) are calculated very accurately using a state-of-art all-order many-body theory called Coupled Cluster (CC) theory in the relativistic frame-work. Different many-body correlations of the CC theory has been estimated by studying the core and valence electron excitations to the unoccupied states. The calculated excitation energies of different states are in very good agreement with the measurements. Also we compare our calculated electric dipole (E1) transition amplitudes of few transitions with recent many-body calculations by different groups. We have also carried out the calculations for the lifetimes of the low-lying states of Ti IV. A long lifetime is found for the first excited 3d2D5/2^{2}D_{5/2} state, which suggested that Ti IV may be one of the useful candidates for many important studies. Most of the results reported here are not available in the literature, to the best of our knowledge.Comment: 15 pages submitted to J. Phys.

    Relativistic calculations of the lifetimes and hyperfine structure constants in 67^{67}Zn+^{+}

    Full text link
    This work presents accurate {\it ab initio} determination of the magnetic dipole (M1) and electric quadrupole (E2) hyperfine structure constants for the ground and a few low-lying excited states in 67^{67}Zn+^{+}, which is one of the interesting systems in fundamental physics. The coupled-cluster (CC) theory within the relativistic framework has been used here in this calculations. Long standing demands for a relativistic and highly correlated calculations like CC can be able to resolve the disagreements among the lifetime estimations reported previously for a few low-lying states of Zn+^{+}. The role of different electron correlation effects in the determination of these quantities are discussed and their contributions are presented.Comment: 9 pages, 1 figure. submitted to J. Phys. B Fast Trac
    • 

    corecore